
Visualizing Model Performance 

 

Fundamental concepts: Visualization of model performance under various kinds of 

uncertainty; 

Further consideration of what is desired from data mining results. 

Exemplary techniques: Profit curves; Cumulative response curves; Lift curves; ROC 

curves. 

 

We developed detailed calculations based on the expected value framework. That chapter 

was much more mathematical than previous ones, and if this is your first introduction to that 

material you may have felt overwhelmed by the equations. Though they form the basis for 

what comes next, by themselves they may not be very intuitive. In this chapter we will take a 

different view toincrease our understanding of what they are revealing. 

 

The expected profit calculation of Equation 7-2 takes a specific set of conditions and 

generates a single number, representing the expected profit in that scenario. Stakeholders 

outside of the data science team may have little patience for details, and will often 

want a higher-level, more intuitive view of model performance. Even data scientists who 

are comfortable with equations and dry calculations often find such single estimates to 

be impoverished and uninformative, because they rely on very stringent assumptions 

(e.g., of precise knowledge of the costs and benefits, or that the models’ estimates of 

probabilities are accurate). In short, it is often useful to present visualizations rather 

than just calculations, and this chapter presents some useful techniques. 

Ranking Instead of Classifying 

“A Key Analytical Framework: Expected Value” on page 194 discussed how the score 

assigned by a model can be used to compute a decision for each individual case based 

on its expected value. A different strategy for making decisions is to rank a set of cases 

by these scores, and then take actions on the cases at the top of the ranked list. Instead 
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1. Indeed, in some applications, scores from the same model may be used in several places 

with different 

thresholds to make different decisions. For example, a model may be used first in a decision 

to grant or deny 

credit. The same model may be used later in setting a new customer’s credit line. 

of deciding each case separately, we may decide to take the top n cases (or, equivalently, 

all cases that score above a given threshold). There are several practical reasons for doing 

this. 

It may be that the model gives a score that ranks cases by their likelihood of belonging 

to the class of interest, but which is not a true probability (recall our discussion in 

Chapter 4 of the distance from the separating boundary as a classifier score). More 

importantly, for some reason we may not be able to obtain accurate probability estimates 

from the classifier. This happens, for example, in targeted marketing applications when 

one cannot get a sufficiently representative training sample. The classifier scores may 

still be very useful for deciding which prospects are better than others, even if a 1% 

probability estimate doesn’t exactly correspond to a 1% probability of responding. 

A common situation is where you have a budget for actions, such as a fixed marketing 

budget for a campaign, and so you want to target the most promising candidates. If one 

is going to target the highest expected value cases using costs and benefits that are 

constant for each class, then ranking cases by likelihood of the target class is sufficient. 

There is no great need to care about the precise probability estimates. The only caveat 



is that the budget be small enough so that the actions do not go into negative expectedvalue 

territory. For now, we will leave that as a business understanding task. 

It also may be that costs and benefits cannot be specified precisely, but nevertheless we 

would like to take actions (and are happy to do so on the highest likelihood cases). We’ll 

return to this situation in the next section. 

If individual cases have different costs and benefits, then our expected 

value discussion in “A Key Analytical Framework: Expected Value” 

on page 194 should make it clear that simply ranking by likelihood 

will not be sufficient. 

When working with a classifier that gives scores to instances, in some situations the 

classifier decisions should be very conservative, corresponding to the fact that the classifier 

should have high certainty before taking the positive action. This corresponds to 

using a high threshold on the output score. Conversely, in some situations the classifier 

can be more permissive, which corresponds to lowering the threshold.1 

This introduces a complication for which we need to extend our analytical framework 

for assessing and comparing models. “The Confusion Matrix” on page 189 stated that 

a classifier produces a confusion matrix. With a ranking classifier, a classifier plus a 
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threshold produces a single confusion matrix. Whenever the threshold changes, the 

confusion matrix may change as well because the numbers of true positives and false 

positives change. 

Figure 8-1. Thresholding a list of instances sorted by scores. Here, a set of test instances 

is scored by a model and sorted decreasing by these scores. We then apply a series of 

thresholds (represented by each horizontal line) to classify all instances above it as positive 

and those below it as negative. Each threshold results in a specific confusion matrix. 

Figure 8-1 illustrates this basic idea. As the threshold is lowered, instances move up 

from the N row into the Y row of the confusion matrix: an instance that was considered 

a negative is now classified as positive, so the counts change. Which counts change 

depends on the example’s true class. If the instance was a positive (in the “p” column) 

it moves up and becomes a true positiveY ,(p ). If it was a negative (n), it becomes a false 

positive Y,(n ). Technically, each different threshold produces a different classifier, 

represented 

by its own confusion matrix. 

This leaves us with two questions: how do we compare different rankings? And, how 

do we choose a proper threshold? If we have accurate probability estimates and a 

wellspecified 

cost-benefit matrix, then we already answered the second question in our 

discussion of expected value: we determine the threshold where our expected profit is 

above a desired level (usually zero). Let’s explore and extend this idea. 
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2. For simplicity in the example we will ignore inventory and other realistic issues that would 

require a more 

complicated profit calculation. 

Profit Curves 

From “A Key Analytical Framework: Expected Value” on page 194, we know how to 

compute expected profit, and we’ve just introduced the idea of using a model to rank 

instances. We can combine these ideas to construct various performance visualizations 

in the form of curves. Each curve is based on the idea of examining the effect of thresholding 

the value of a classifier at successive points, implicitly dividing the list of instances 

into many successive sets of predicted positive and negative instances. As we move the 



threshold “down” the ranking, we get additional instances predicted as being positive 

rather than negative. Each threshold, i.e., each set of predicted positives and negatives, 

will have a corresponding confusion matrix. The previous chapter showed that once we 

have a confusion matrix, along with knowledge of the cost and benefits of decisions, we 

can generate an expected value corresponding to that confusion matrix. 

More specifically, with a ranking classifier, we can produce a list of instances and their 

predicted scores, ranked by decreasing score, and then measure the expected profit that 

would result from choosing each successive cut-point in the list. Conceptually, this 

amounts to ranking the list of instances by score from highest to lowest and sweeping 

down through it, recording the expected profit after each instance. At each cut-point 

we record the percentage of the list predicted as positive and the corresponding estimated 

profit. Graphing these values gives us a profit curve. Three profit curves are shown 

in Figure 8-2. 

This graph is based on a test set of 1,000 consumers—say, a small random population 

of people to whom you test-marketed earlier. (When interpreting results, we normally 

will talk about percentages of consumers, so as to generalize to the population as a 

whole.) For each curve, the consumers are ordered from highest to lowest probability 

of accepting an offer based on some model. For this example, let’s assume our profit 

margin is small: each offer costs $5 to make and market, and each accepted offer earns 

$9, for a profit of $4. The cost matrix is thus: 

p n 

Y $4 -$5 

N $0 $0 

The curves show that profit can go negative—not always, but sometimes they will, depending 

on the costs and the class ratio. In particular, this will happen when the profit 

margin is thin and the number of responders is small, because the curves show you 

“going into the red” by working too far down the list and making offers to too many 

people who won’t respond, thereby spending too much on the costs of the offers.2 
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Figure 8-2. Profit curves of three classifiers. Each curve shows the expected cumulative 

profit for that classifier as progressively larger proportions of the consumer base are 

targeted. 

Notice that all four curves begin and end at the same point. This should make sense 

because, at the left side, when no customers are targeted there are no expenses and zero 

profit; at the right side everyone is targeted, so every classifier performs the same. In 

between, we’ll see some differences depending on how the classifiers order the customers. 

The random classifier performs worst because it has an even chance of choosing a 

responder or a nonresponder. Among the classifiers tested here, the one labeled Classifier 

2 produces the maximum profit of $200 by targeting the top-ranked 50% of consumers. 

If your goal was simply to maximize profit and you had unlimited resources, 

you should choose Classifier 2, use it to score your population of customers, and target 

the top half (highest 50%) of customers on the list. 

Now consider a slightly different but very common situation where you’re constrained 

by a budget. You have a fixed amount of money available and you must plan how to 

spend it before you see any profit. This is common in situations such as marketing 

campaigns. As before, you still want to target the highest-ranked people, but now you 
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3. Another common situation is to have a workforce constraint. It’s the same idea: you have a 

fixed allocation of 



resources (money or personnel) available to address a problem and you want the most “bang 

for the buck.” 

An example might be that you have a fixed workforce of fraud analysts, and you want to give 

them the topranked 

cases of potential fraud to process. 

have a budgetary constraint3 that may affect your strategy. Say you have 100,000 total 

customers and a budget of $40,000 for the marketing campaign. You want to use the 

modeling results (the profit curves in Figure 8-2) to figure out how best to spend your 

budget. What do you do in this case? Well, first you figure out how many offers you can 

afford to make. Each offer costs $5 so you can target at most $40,000/$5 = 8,000 customers. 

As before, you want to identify the customers most likely to respond, but each 

model ranks customers differently. Which model should you use for this campaign? 

8,000 customers is 8% of your total customer base, so check the performance curves at 

x=8%. The best-performing model at this performance point is Classifier 1. You should 

use it to score the entire population, then send offers to the highest-ranked 8,000 customers. 

In summary, from this scenario we see that adding a budgetary constraint causes not 

only a change in the operating point (targeting 8% of the population instead of 50%) 

but also a change in the choice of classifier to do the ranking. 

ROC Graphs and Curves 

Profit curves are appropriate when you know fairly certainly the conditions under which 

a classifier will be used. Specifically, there are two critical conditions underlying the 

profit calculation: 

1. The class priors; that is, the proportion of positive and negative instances in the 

target population, also known as the base rate (usually referring to the proportion 

of positives). Recall that Equation 7-2 is sensitive to p(p) and p(n). 

2. The costs and benefits. The expected profit is specifically sensitive to the relative 

levels of costs and benefits for the different cells of the cost-benefit matrix. 

If both class priors and cost-benefit estimates are known and are expected to be stable, 

profit curves may be a good choice for visualizing model performance. 

However, in many domains these conditions are uncertain or unstable. In fraud detection 

domains, for example, the amount of fraud changes from place to place, and from 

one month to the next (Leigh, 1995; Fawcett & Provost, 1997). The amount of fraud 

influences the priors. In the case of mobile phone churn management, marketing campaigns 

can have different budgets and offers may have different costs, which will change 

the expected costs. 
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One approach to handling uncertain conditions is to generate many different expected 

profit calculations for each model. This may not be very satisfactory: the sets of models, 

sets of class priors, and sets of decision costs multiply in complexity. This often leaves 

the analyst with a large stack of profit graphs that are difficult to manage, difficult to 

understand the implications of, and difficult to explain to a stakeholder. 

Another approach is to use a method that can accomodate uncertainty by showing the 

entire space of performance possibilities. One such method is the Receiver Operating 

Characteristics (ROC) graph (Swets, 1988; Swets, Dawes, & Monahan, 2000; Fawcett, 

2006). A ROC graph is a two-dimensional plot of a classifier with false positive rate on 

the x axis against true positive rate on the y axis. As such, a ROC graph depicts relative 

trade-offs that a classifier makes between benefits (true positives) and costs (false positives). 

Figure 8-3 shows a ROC graph with five classifiers labeled A through E. 

Figure 8-3. ROC space and five different classifiers (A-E) with their performance 

shown. 



A discrete classifier is one that outputs only a class label (as opposed to a ranking). As 

already discussed, each such classifier produces a confusion matrix, which can be 

summarized 

by certain statistics regarding the numbers and rates of true positives, false 

positives, true negatives, and false negatives. Note that although the confusion matrix 
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contains four numbers, we really only need two of the rates: either the true positive rate 

or the false negative rate, and either the false positive rate or the true negative rate. Given 

one from either pair the other can be derived since they sum to one. It is conventional 

to use the true positive rate (tp rate) and the false positive rate (fp rate), and we will keep 

to that convention so the ROC graph will make sense. Each discrete classifier produces 

an (fp rate, tp rate) pair corresponding to a single point in ROC space. The classifiers 

in Figure 8-3 are all discrete classifiers. Importantly for what follows, the tp rate is 

computed using only the actual positive examples, and the fp rate is computed using 

only the actual negative examples. 

Remembering exactly what statistics the tp rate and fp rate refer to can 

be confusing for someone who does not deal with such things on a 

daily basis. It can be easier to remember by using less formal but more 

intuitive names for the statistics: the tp rate is sometimes referred to 

as the hit rate—what percent of the actual positives does the classifier 

get right. The fp rate is sometimes referred to as the false alarm rate 

—what percent of the actual negative examples does the classifier get 

wrong (i.e., predict to be positive). 

Several points in ROC space are important to note. The lower left point (0, 0) represents 

the strategy of never issuing a positive classification; such a classifier commits no false 

positive errors but also gains no true positives. The opposite strategy, of unconditionally 

issuing positive classifications, is represented by the upper right point (1, 1). The point 

(0, 1) represents perfect classification, represented by a star. The diagonal line connecting 

(0, 0) to (1, 1) represents the policy of guessing a class. For example, if a classifier 

randomly guesses the positive class half the time, it can be expected to get half the 

positives and half the negatives correct; this yields the point (0.5, 0.5) in ROC space. If 

it guesses the positive class 90% of the time, it can be expected to get 90% of the positives 

correct but its false positive rate will increase to 90% as well, yielding (0.9, 0.9) in ROC 

space. Thus a random classifier will produce a ROC point that moves back and forth 

on the diagonal based on the frequency with which it guesses the positive class. In order 

to get away from this diagonal into the upper triangular region, the classifier must exploit 

some information in the data. In Figure 8-3, E’s performance at (0.6, 0.6) is virtually 

random. E may be said to be guessing the positive class 60% of the time. Note that no 

classifier should be in the lower right triangle of a ROC graph. This represents performance 

that is worse than random guessing. 

One point in ROC space is superior to another if it is to the northwest of the first (tp 

rate is higher and fp rate is no worse; fp rate is lower and tp rate is no worse, or both are 

better). Classifiers appearing on the lefthand side of a ROC graph, near the x axis, may 

be thought of as “conservative”: they raise alarms (make positive classifications) only 

with strong evidence so they make few false positive errors, but they often have low true 
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positive rates as well. Classifiers on the upper righthand side of a ROC graph may be 

thought of as “permissive”: they make positive classifications with weak evidence so they 

classify nearly all positives correctly, but they often have high false positive rates. In 

Figure 8-3, A is more conservative than B, which in turn is more conservative than C. 



Many real-world domains are dominated by large numbers of negative instances (see 

the discussion in “Sidebar: Bad Positives and Harmless Negatives” on page 188), so 

performance in the far left-hand side of the ROC graph is often more interesting than 

elsewhere. If there are very many negative examples, even a moderate false alarm rate 

can be unmanageable. A ranking model produces a set of points (a curve) in ROC space. 

As discussed previously, a ranking model can be used with a threshold to produce a 

discrete (binary) classifier: if the classifier output is above the threshold, the classifier 

produces a Y, else an N. Each threshold value produces a different point in ROC space, 

as shown in Figure 8-4. 

Figure 8-4. Each different point in ROC space corresponds to a specific confusion matrix. 

Conceptually, we may imagine sorting the instances by score and varying a threshold 

from –∞ to +∞ while tracing a curve through ROC space, as shown in Figure 8-5. 
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4. Technically, if there are runs of examples with the same score, we should count the 

positive and negatives 

across the entire run, and thus the ROC curve will have a sloping step rather than square step. 

Whenever we pass a positive instance, we take a step upward (increasing true positives); 

whenever we pass a negative instance, we take a step rightward (increasing false positives). 

Thus the “curve” is actually a step function for a single test set, but with enough 

instances it appears smooth.4 

Figure 8-5. An illustration of how a ROC “curve” (really, a stepwise graph) is constructed 

from a test set. The example set, at left, consists of 100 positives and 100 negatives. 

The model assigns a score to each instance and the instances are ordered decreasing 

from bottom to top. To construct the curve, start at the bottom with an initial confusion 

matrix where everything is classified as N. Moving upward, every instance moves a 

count of 1 from the N row to the Y row, resulting in a new confusion matrix. Each confusion 

matrix maps to a (fp rate, tp rate) pair in ROC space. 

An advantage of ROC graphs is that they decouple classifier performance from the 

conditions under which the classifiers will be used. Specifically, they are independent 

of the class proportions as well as the costs and benefits. A data scientist can plot the 
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performance of classifiers on a ROC graph as they are generated, knowing that the 

positions and relative performance of the classifiers will not change. The region(s) on 

the ROC graph that are of interest may change as costs, benefits, and class proportions 

change, but the curves themselves should not. 

Both Stein (2005) and Provost & Fawcett (1997, 2001) show how the operating conditions 

of the classifier (the class priors and error costs) can be combined to identify the 

region of interest on its ROC curve. Briefly, knowledge about the range of possible class 

priors can be combined with knowledge about the cost and benefits of decisions; together 

these describe a family of tangent lines that can identify which classifier(s) should 

be used under those conditions. Stein (2005) presents an example from finance (loan 

defaulting) and shows how this technique can be used to choose models. 

The Area Under the ROC Curve (AUC) 

An important summary statistic is the area under the ROC curve (AUC). As the name 

implies, this is simply the area under a classifier’s curve expressed as a fraction of the 

unit square. Its value ranges from zero to one. Though a ROC curve provides more 

information than its area, the AUC is useful when a single number is needed to summarize 

performance, or when nothing is known about the operating conditions. Later, 

in “Example: Performance Analytics for Churn Modeling” on page 223, we will show a 

use of the AUC statistic. For now it is enough to realize that it’s a good general summary 



statistic of the predictiveness of a classifier. 

As a technical note, the AUC is equivalent to the Mann-Whitney- 

Wilcoxon measure, a well-known ordering measure in Statistics (Wilcoxon, 

1945). It is also equivalent to the Gini Coefficient, with a minor 

algebraic transformation (Adams & Hand, 1999; Stein, 2005). Both 

are equivalent to the probability that a randomly chosen positive instance 

will be ranked ahead of a randomly chosen negative instance. 

Cumulative Response and Lift Curves 

ROC curves are a common tool for visualizing model performance for classification, 

class probability estimation, and scoring. However, as you may have just experienced if 

you are new to all this, ROC curves are not the most intuitive visualization for many 

business stakeholders who really ought to understand the results. It is important for the 

data scientist to realize that clear communication with key stakeholders is not only a 

primary goal of her job, but also is essential for doing the right modeling (in addition 

to doing the modeling right). Therefore, it can be useful also to consider visualization 

frameworks that might not have all of the nice properties of ROC curves, but are more 

intuitive. (It is important for the business stakeholder to realize that the theoretical 

The Area Under the ROC Curve (AUC) | 219 

properties that are sacrificed sometimes are important, so it may be necessary in certain 

circumstances to pull out the more complex visualizations.) 

One of the most common examples of the use of an alternate visualization is the use of 

the “cumulative response curve,” rather than the ROC curve. They are closely related, 

but the cumulative response curve is more intuitive. Cumulative response curves plot 

the hit rate (tp rate; y axis), i.e., the percentage of positives correctly classified, as a function 

of the percentage of the population that is targeted (x axis). So, conceptually as we move 

down the list of instances ranked by the model, we target increasingly larger proportions 

of all the instances. Hopefully in the process, if the model is any good, when we are at 

the top of the list we will target a larger proportion of the actual positives than actual 

negatives. As with ROC curves, the diagonal line x=y represents random performance. 

In this case, the intuition is clear: if you target 20% of all instances completely randomly, 

you should target 20% of the positives as well. Any classifier above the diagonal is providing 

some advantage. 

The cumulative response curve is sometimes called a lift curve, because 

one can see the increase over simply targeting randomly as how 

much the line representing the model performance is lifted up over the 

random performance diagonal. We will call these curves cumulative 

response curves, because “lift curve” also refers to a curve that specifically 

plots the numeric lift. 

Intuitively, the lift of a classifier represents the advantage it provides over random 

guessing. The lift is the degree to which it “pushes up” the positive instances in a list 

above the negative instances. For example, consider a list of 100 customers, half of whom 

churn (positive instances) and half who do not (negative instances). If you scan down 

the list and stop halfway (representing 0.5 targeted), how many positives would you 

expect to have seen in the first half? If the list were sorted randomly, you would expect 

to have seen only half the positives (0.5), giving a lift of 0.5/0.5 = 1. If the list had been 

ordered by an effective ranking classifier, more than half the positives should appear in 

the top half of the list, producing a lift greater than 1. If the classifier were perfect, all 

positives would be ranked at the top of the list so by the midway point we would have 

seen all of them (1.0), giving a lift of 1.0/0.5 = 2. 

Figure 8-6 shows four sample cumulative response curves, and Figure 8-7 shows the lift 



curves of the same four. 
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Figure 8-6. Four example classifiers (A–D) and their cumulative response curves. 

The lift curve is essentially the value of the cumulative response curve at a given x point 

divided by the diagonal line (y=x) value at that point. The diagonal line of a cumulative 

response curve becomes a horizontal line at y=1 on the lift curve. 

Sometimes you will hear claims like “our model gives a two times (or a 2X) lift”; this 

means that at the chosen threshold (often not mentioned), the lift curve shows that the 

model’s targeting is twice as good as random. On the cumulative response curve, the 

corresponding tp rate for the model will be twice the tp rate for the random-performance 

diagonal. (You might also compute a version of lift with respect to some other baseline.) 

The lift curve plots this numeric lift on the y axis, against the percent of the population 

targeted on the x axis (the same x axis as the cumulative response curve). 
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Figure 8-7. The four classifiers (A–D) of Figure 8-6 and their lift curves. 

Both lift curves and cumulative response curves must be used with care if the exact 

proportion of positives in the population is unknown or is not represented accurately 

in the test data. Unlike for ROC curves, these curves assume that the test set has exactly 

the same target class priors as the population to which the model will be applied. This 

is one of the simplifying assumptions that we mentioned at the outset, that can allow 

us to use a more intuitive visualization. 

As an example, in online advertising the base rate of observed response to an advertisement 

may be very small. One in ten million (1:107) is not unusual. Modelers may 

not want to have to manage datasets that have ten million nonresponders for every 

responder, so they down-sample the nonresponders, and create a more balanced dataset 

for modeling and evaluation. When visualizing classifier performance with ROC curves, 

this will have no effect (because as mentioned above, the axes each correspond only to 

proportions of one class). However, lift and cumulative response curves will be different 

—the basic shapes of the curves may still be informative, but the relationships between 

the values on the axes will not be valid. 
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Example: Performance Analytics for Churn Modeling 

The last few chapters have covered a lot of territory in evaluation. We’ve introduced 

several important methods and issues in evaluating models. In this section we tie them 

together with a single application case study to show the results of different evaluation 

methods. The example we’ll use is our ongoing domain of cell phone churn. However, 

in this section we use a different (and more difficult) churn dataset than was used in 

previous chapters. It is a dataset from the 2009 KDD Cup data mining competition. We 

did not use this dataset in earlier examples, such as Table 3-2 and Figure 3-18, because 

these attribute names and values have been anonymized extensively to preserve customer 

privacy. This leaves very little meaning in the attributes and their values, which 

would have interfered with our discussions. However, we can demonstrate the model 

performance analytics with the sanitized data. From the website: 

The KDD Cup 2009 offers the opportunity to work on large marketing databases from 

the French Telecom company Orange to predict the propensity of customers to switch 

provider (churn), buy new products or services (appetency), or buy upgrades or add-ons 

proposed to them to make the sale more profitable (up-selling). The most practical way, 

in a CRM system, to build knowledge on customer is to produce scores. 

A score (the output of a model) is an evaluation for all instances of a target variable to 

explain (i.e., churn, appetency or up-selling). Tools which produce scores allow to project, 



on a given population, quantifiable information. The score is computed using input variables 

which describe instances. Scores are then used by the information system (IS), for 

example, to personalize the customer relationship. 

Little of the dataset is worth describing because it has been thoroughly sanitized, but its 

class skew is worth mentioning. There are about 47,000 instances altogether, of which 

about 7% are marked as churn (positive examples) and the remaining 93% are not 

(negatives). This is not severe skew, but it’s worth noting for reasons that will become 

clear. 

We emphasize that the intention is not to propose good solutions for this problem, or 

to suggest which models might work well, but simply to use the domain as a testbed to 

illustrate the ideas about evaluation we’ve been developing. Little effort has been done 

to tune performance. We will train and test several models: a classification tree, a logistic 

regression equation, and a nearest-neighbor model. We will also use a simple Bayesian 

classifier called Naive Bayes, not discussed until Chapter 9. For the purpose of this 

section, details of the models are unimportant; all the models are “black boxes” with 

different performance characteristics. We’re using the evaluation and visualization 

techniques introduced in the last chapters to understand their characteristics. 
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5. Optimism can be a fine thing, but as a rule of thumb in data mining, any results that show 

perfect performance 

on a real-world problem should be mistrusted. 

Let’s begin with a very naive evaluation. We’ll train on the complete dataset and then 

test on the same dataset we trained on. We’ll also measure simple classification accuracies. 

The results are shown in Table 8-1. 

Table 8-1. Accuracy values of four classifiers trained and tested on the complete KDD 

Cup 2009 churn problem. 

Model Accuracy 

Classification tree 95% 

Logistic regression 93% 

k-Nearest Neighbor 100% 

Naive Bayes 76% 

Several things are striking here. First, there appears to be a wide range of performance 

—from 76% to 100%. Also, since the dataset has a base rate of 93%, any classifier should 

be able to achieve at least this minimum accuracy. This makes the Naive Bayes result 

look strange since it’s significantly worse. Also, at 100% accuracy, the k-Nearest Neighbor 

classifier looks suspiciously good.5 

But this test was performed on the training set, and by now (having read Chapter 5) 

you realize such numbers are unreliable, if not completely meaningless. They are more 

likely to be an indication of how well each classifier can memorize (overfit) the training 

set than anything else. So instead of investigating these numbers further, let’s redo the 

evaluation properly using separate training and test sets. We could just split the dataset 

in half, but instead we’ll use the cross-validation procedure discussed in “From Holdout 

Evaluation to Cross-Validation” on page 126. This will not only ensure proper separation 

of datasets but also provide a measure of variation in results. The results are shown in 

Table 8-2. 

Table 8-2. Accuracy and AUC values of four classifiers on the KDD Cup 2009 churn 

problem. These values are from ten-fold cross-validation. 

Model Accuracy (%) AUC 

Classification Tree 91.8 ± 0.0 0.614 ± 0.014 

Logistic Regression 93.0 ± 0.1 0.574 ± 0.023 



k-Nearest Neighbor 93.0 ± 0.0 0.537 ± 0.015 

Naive Bayes 76.5 ± 0.6 0.632 ± 0.019 
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6. Note that the x axis is log scale so the righthand side of the graph looks compressed. 

Each number is an average of ten-fold cross validation followed by a “•}” sign and the 

standard deviation of the measurements. Including a standard deviation may be regarded 

as a kind of “sanity check”: a large standard deviation indicates the test results are 

very erratic, which could be the source of various problems such as the dataset being 

too small or the model being a very poor match to a portion of the problem. 

The accuracy numbers have all dropped considerably, except for Naive Bayes, which is 

still oddly low. The standard deviations are fairly small compared to the means so there 

is not a great deal of variation in the performance on the folds. This is good. 

At the far right is a second value, the Area Under the ROC Curve (commonly abbreviated 

AUC). We briefly discussed this AUC measure back in “The Area Under the ROC Curve 

(AUC)” on page 219, noting it as a good general summary statistic of the predictiveness 

of a classifier. It varies from zero to one. A value of 0.5 corresponds to randomness (the 

classifier cannot distinguish at all between positives and negatives) and a value of one 

means that it is perfect in distinguishing them. One of the reasons accuracy is a poor 

metric is that it is misleading when datasets are skewed, which this one is (93% negatives 

and 7% positives). 

Recall that we introduced fitting curves back in “Overfitting Examined” on page 113 as 

a way to detect when a model is overfitting. Figure 8-8 shows fitting curves for the 

classification tree model on this churn domain. The idea is that as a model is allowed 

to get more and more complex it typically fits the data more and more closely, but at 

some point it is simply memorizing idiosyncracies of the particular training set rather 

than learning general characteristics of the population. A fitting curve plots model 

complexity (in this case, the number of nodes in the tree) against a performance measure 

(in this case, AUC) using two datasets: the set it was trained upon and a separate holdout 

set. When performance on the holdout set starts to decrease, overfitting is occurring, 

and Figure 8-8 does indeed follow this general pattern.6 The classification tree definitely 

is overfitting, and the other models probably are too. The “sweet spot” where holdout 

performance is maximum is at about 100 tree nodes, beyond which the performance 

on the holdout data declines. 
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Figure 8-8. Fitting curves for a classification tree on the churn data: the change in the 

area under the ROC curve (AUC) as we increase the allowed complexity (size) of the 

tree. The performance on the training data (upper curve) continues to increase whereas 

the performance on the holdout data peaks and then declines. 

Let’s return to the model comparison figures in Table 8-2. These values are taken from 

a reasonably careful evaluation using holdout data, so they are less suspicious. However, 

they do raise some questions. There are two things to note about the AUC values. One 

is that they are all fairly modest. This is unsurprising with real-world domains: many 

datasets simply have little signal to be exploited, or the data science problem is formulated 

after the easier problems have already been solved. Customer churn is a difficult 

problem so we shouldn’t be too surprised by these modest AUC scores. Even modest 

AUC scores may lead to good business results. 

The second interesting point is that Naive Bayes, which has the lowest accuracy of the 

group, has the highest AUC score in Table 8-2. What’s going on here? Let’s take a look 

at a sample confusion matrix of Naive Bayes, with the highest AUC and lowest accuracy, 

and compare it with the confusion matrix of k-NN (lowest AUC and high accuracy) on 



the same dataset. Here is the Naive Bayes confusion matrix: 
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p n 

Y 127 (3%) 848 (18%) 

N 200 (4%) 3518 (75%) 

Here is the k-Nearest Neighbors confusion matrix on the same test data: 

p n 

Y 3 (0%) 15 (0%) 

N 324 (7%) 4351 (93%) 

We see from the k-NN matrix that it rarely predicts churn—the Y row is almost empty. 

In other words, it is performing very much like a base-rate classifier, with a total accuracy 

of just about 93%. On the other hand, the Naive Bayes classifier makes more mistakes 

(so its accuracy is lower) but it identifies many more of the churners. Figure 8-9 shows 

the ROC curves of a typical fold of the cross-validation procedure. Note that the curves 

corresponding to Naive Bayes (NB) and Classification Tree (Tree) are somewhat more 

“bowed” than the others, indicating their predictive superiority. 

Figure 8-9. ROC curves of the classifiers on one fold of cross-validation for the churn 

problem. 

As we said, ROC curves have a number of nice technical properties but they can be hard 

to read. The degree of “bowing” and the relative superiority of one curve to another can 

be difficult to judge by eye. Lift and profit curves are sometimes preferable, so let’s 

examine these. 
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Lift curves have the advantage that they don’t require us to commit to any costs yet so 

we begin with those, shown in Figure 8-10. 

Figure 8-10. Lift curves for the churn domain. 

These curves are averaged over the 10 test sets of the cross-validation. The classifiers 

generally peak very early then trail off down to random performance (Lift=1). Both Tree 

(Classification tree) and NB (Naive Bayes) perform very well. Tree is superior up 

through about the first 25% of the instances, after which it is dominated by NB. Both 

k-NN and Logistic Regression (LR) perform poorly here and have no regions of superiority. 

Looking at this graph, if you wanted to target the top 25% or less of customers, 

you’d choose the classification tree model; if you wanted to go further down the list you 

should choose NB. Lift curves are sensitive to the class proportions, so if the ratio of 

churners to nonchurners changed these curves would change also. 
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A note on combining classifiers 

Looking at these curves, you might wonder, “If Tree is best for the top 

25%, and NB is best for the remainder, why don’t we just use Tree’s top 

25% then switch to NB’s list for the rest?” This is a clever idea, but you 

won’t necessarily get the best of both classifiers that way. The reason, 

in short, is that the two orderings are different and you can’t simply 

pick-and-choose segments from each and expect the result to be optimal. 

The evaluation curves are only valid for each model individually, 

and all bets are off when you start mixing orderings from each. 

But classifiers can be combined in principled ways, such that the combination 

outperforms any individual classifier. Such combinations are 

called ensembles, and they are discussed in “Bias, Variance, and Ensemble 

Methods” on page 306. 

Although the lift curve shows you the relative advantage of each model, it does not tell 



you how much profit you should expect to make—or even whether you’d make a profit 

at all. For that purpose we use a profit curve, which incorporates assumptions about 

costs and benefits and displays expected value. 

Let’s ignore the actual details of churn in wireless for the moment (we will return to 

these explicitly in Chapter 11). To make things interesting with this dataset, let’s make 

two sets of assumptions about costs and benefits. In the first scenario, let’s assume an 

expense of $3 for each offer and a gross benefit of $30, so a true positive gives us a net 

profit of $27 and a false positive gives a net loss of $3. This is a 9-to-1 profit ratio. The 

resulting profit curves are shown in Figure 8-11. The classification tree is superior for 

the highest cutoff thresholds, and Naive Bayes dominates for the remainder of the possible 

cutoff thresholds. Maximum profit would be achieved in this scenario by targeting 

roughly the first 20% of the population. 
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Figure 8-11. Profit curves of four classifiers on the churn domain, assuming a 9-to-1 

ratio of benefit to cost. 

In the second scenario, we assume the same expense of $3 for each offer (so the false 

positive cost doesn’t change) but we assume a higher gross benefit ($39), so a true positive 

now nets us a profit of $36. This is a 12-to-1 profit ratio. The curves are shown in 

Figure 8-12. As you might expect, this scenario has much higher maximum profit than 

the previous scenario. More importantly it demonstrates different profit maxima. One 

peak is with the Classification Tree at about 20% of the population and the second peak, 

slightly higher, occurs when we target the top 35% of the population with NB. The 

crossover point between Tree and LR occurs at the same place on both graphs, however: 

at about 25% of the population. This illustrates the sensitivity of profit graphs to the 

particular assumptions about costs and benefits. 
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Figure 8-12. Profit curves of four classifiers on the churn domain. These curves assume 

a more lucrative 12-to-1 ratio (compare with Figure 8-11). 

We conclude this section by reiterating that these graphs are just meant to illustrate the 

different techniques for model evaluation. Little effort was made to tune the induction 

methods to the problem, and no general conclusions should be drawn about the relative 

merits of these model types or their suitability for churn prediction. We deliberately 

produced a range of classifier performance to illustrate how the graphs could reveal 

their differences. 

Summary 

A critical part of the data scientist’s job is arranging for proper evaluation of models and 

conveying this information to stakeholders. Doing this well takes experience, but it is 

vital in order to reduce surprises and to manage expectations among all concerned. 

Visualization of results is an important piece of the evaluation task. 

When building a model from data, adjusting the training sample in various ways may 

be useful or even necessary; but evaluation should use a sample reflecting the original, 

realistic population so that the results reflect what will actually be achieved. 
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When the costs and benefits of decisions can be specified, the data scientist can calculate 

an expected cost per instance for each model and simply choose whichever model produces 

the best value. In some cases a basic profit graph can be useful to compare models 

of interest under a range of conditions. These graphs may be easy to comprehend for 

stakeholders who are not data scientists, since they reduce model performance to their 

basic “bottom line” cost or profit. 

The disadvantage of a profit graph is that it requires that operating conditions be known 



and specified exactly. With many real-world problems, the operating conditions are 

imprecise or change over time, and the data scientist must contend with uncertainty. In 

such cases other graphs may be more useful. When costs and benefits cannot be specified 

with confidence, but the class mix will likely not change, a cumulative response or lift 

graph is useful. Both show the relative advantages of classifiers, independent of the value 

(monetary or otherwise) of the advantages. 

Finally, ROC curves are a valuable visualization tool for the data scientist. Though they 

take some practice to interpret readily, they separate out performance from operating 

conditions. In doing so they convey the fundamental trade-offs that each model is 

making. 

A great deal of work in the Machine Learning and Data Mining communities involves 

comparing classifiers in order to support various claims about learning algorithm superiority. 

As a result, much has been written about the methodology of classifier comparison. 

For the interested reader a good place to start is Thomas Dietterich’s (1998) 

article “Approximate Statistical Tests for Comparing Supervised Classification Learning 

Algorithms,” and the book Evaluatin 


